
Arrays and Pointers 10-1

Arrays

Pointers

andIIArrays and Pointers

Arrays of Characters

Arrays of Structures

Arrays of Arrays

Arrays of Pointers

 IISection

Arrays and Pointers 10-2

Arrays and Pointers

10

Offset Expressions, Increments, and Indexes

10
Array Delcarations and Initialization

Array References and Array Notation

Arrays and Pointer Operations

The Array Name as Pointer

Pointer Offset Expressions

Increments: Pointer Assignments

Indexes: Subtraction of Pointers

Arrays and Functions

Arrays and Pointers 10-3

Copyright 2006, Richard Petersen
All rights reserved

Section 2: Arrays and Pointers

10. Arrays and Pointers

An array is a collection of objects, all of the same data type. Any one data type can be used in an array.
You can declare an array of integers, an array of characters, an array of structures, and even an array of
pointers. Though an array may contain objects, an array is not an object itself. The declaration of an
array reserves memory, which is then managed by pointers. Array objects themselves are actually
referenced through pointer indirections. In this respect, there is a special relationship between arrays
and pointers. That relationship will be carefully explored throughout this chapter.
 There are three pointer operations designed specifically to manage arrays. They are described in
this text as the offset, increment, and index operations. The offset operation references an object in an
array. The increment operation advances sequentially from one object to the next. The index operation
provides the position of an object in an array.
 An array object can also be referenced using array subscripts. An array subscript is a notation
consists of a set of brackets and the index of an object. Array subscripts looks much like array
references in other languages. It is often clearer and more elegant to use. However, an array subscript
is equivalent to the pointer offset operation. It is, in fact, just another way of writing a pointer offset
operation.

Array Declarations and Initializations

An array declaration consists of four parts: the object data type, the array name, the array data type, and
the number of objects in the array. The array data type is represented with opening and closing brackets,
[]. An integer value is placed within the brackets to specify the number of objects being declared.
Figure 10.1 describes the different components of an array declaration. The declaration shown here
declares an array of 5 integers. The array name is mynums.

 int mynums[5];

int mynums[5];
Object data type,
type of elements in
the array

Array name

The array data type,
the brackets, []

Number of objects in the array – an
integer constant expression

Arrays and Pointers 10-4

Figure 10.1. Array Declaration.

 The number of objects in an array is determined by an integer constant expression. In the
declarations that follow, the number of objects for mynums is determined by the constant 5. The
number of objects in the array totals is determined by a constant arithmetic expression, 3 * 5.

 int totals [3*5];

 int main(void)
 {
 int nums [5];

 }

 You can declare many different kinds of arrays, each having its own data type and number of
objects. In the next example, the arrays mynums and name have the same number of objects, 5, but
different types. mynums is an array of integers, and name is an array of characters. Though the arrays
mynums and totals have the same type of objects, they have a different number of objects. mynums has
5 objects, and totals has 10 objects.

 int mynums [5];
 int totals [10];
 char name[5];

 You can think of the objects in an array as being numbered sequentially. The numbering begins
with zero and ends with one less than the number of objects in the array. The array mynums is an array
of 5 integers, each numbered sequentially from 0 to 4 (see figure 10.2).

int mynums[5];

mynums
 0 1 2 3 4

Figure 10.2. Array elements numbered from 0.

 The array itself is identified by its array name. Each object in the array is referenced through the
array name. The number of an object's place in the sequence, together with the array name, is used to
reference the object.

Array Initialization

Recall that when you declare a variable you can also initialize it with a value. In the declaration char
mychar='E', the variable mychar is initialized with the character value 'E'. In much the same way, when
you declare an array, you can also initialize its elements. You list the initialization values within a set of
braces and separate them sequentially by commas. The first value will be assigned to the first element,
the second value to the second element, and so on. In the next example, the mynums array is declared as

Arrays and Pointers 10-5

an array of five integer objects, each initialized by a value in the initialization list. The first object is
assigned the first value in the initialization list, in this case 3. The second object is assigned the second
value, 4, and so on.

 int mynums[5] = { 3,4,5,6,7 };

 You can even use the initialization part of the array declaration to specify the actual number of
objects in the array. To do so, you simply leave out the number that you would usually place within the
brackets to specify the number of objects in the array, leaving you with a set of empty brackets followed
by a list of initialization values. The number of objects in the array will then be determined by the
number of values in the initialization list. In the next example, the myletters array is declared as an
array of three integers. Notice the empty brackets. The number of objects in the array is determined the
number of values in the initialization list, in this case three.

 int myletters[] = { C,D,E };

 In the arinit.c program in Listing 10.1, both the arrays letters and totals use this form of array
declaration. myletters is declared as an array of three characters. The array declaration uses empty
brackets and has three values in its initialization list. totals is declared as an array of four integers,
having four values in its initialization list.

LLIISSTTIINNGG 1100..11
arinit.c

#include <stdio.h>

int main(void)
 {
 char myletters[] = {'C','D','E'};
 int totals[] = {23, 8, 11, 31};

 putchar (myletters[1]);

 return 0;
 }

 There are variations on array initialization which are unique to the type of arrays declared.
Arrays of characters allow certain kinds of initialization using string constants, as do arrays of pointers
to characters. Arrays of arrays and arrays of structures use nested lists of array values. Each variation
will be presented when those types of arrays are discussed.

Arrays and Pointers 10-6

int totals[] = { 23, 8, 11, 21 };

totals 8 11 2123

char myletters[] = {'C','D','E'};

myletters D EC

 0 1 2 3

 0 1 2

Figure 10.3. Array initialization using empty brackets.

Array References and Array Subscripts

Once you have declared an array, you can reference its objects, and then use those objects in
expressions. To reference an array object, you need to specify its position in the array. As previously
noted, objects in an array are arranged in sequence, starting from zero. In this sense, objects are
numbered according to their position in that sequence. You can then use this numbering to reference
individual objects in the array. You can reference an object in the third position using the number 2.
The object in the second position is reference using the number 1. Remember that the numbering starts
from 0, not 1, so that the first object is referenced using the number 0 (not 1). The number of an object's
place in an array sequence is often referred to as either the object's index or subscript.
 You reference an array object by using a combination of the array name together with the
position of that object in the array. However, the actual reference can take two different forms: that of
array subscripts or of a pointer offset operation (the pointer offset operation is discussed later in this
chapter.) An array subscript is very similar to the way in which arrays are referenced in other
programming languages. With an array subscript, a particular object in an array is referenced with its
array name and the number of the object's position in the array, which is placed within brackets.
mynums[2] refers to the third object in the mynums array; mynums[0] refers to the first object. The
numbering always begins with 0.

 mynums[0] /*first object */
 mynums[2] /*third object */
 mynums[4] /*fifth object */

 Once you have referenced an object, you can use it as you would any other object of that type.
An integer object can be used like any integer variable. You can think of a reference of an object in an
array of integers, as a reference an integer variable. Just as variables can be assigned values, each object
of an array can be assigned a value. You can use an array reference to an integer object in an arithmetic
expression, just as you would use an integer variable. In the next example the fourth object in the
mynums array is first assigned a value, and then used in an addition operation, assigning the result to the
first object.

Arrays and Pointers 10-7

 int mynums[5];

 mynums[3] = 23

 mynums[0] = (2 * mynums[3]);

 The term element is often used to refer to an object in an array. In an array of integers, the
integer objects making up the array are referred to as elements of the array. mynums[2] references the
third element in the mynums array (see figure 10.4). However, the term element can be misleading. An
element is an object itself, not merely a piece of a larger construct. A reference of an element in an array
of integers references an integer variable. In listing 10.2, each element of the mynums array is
referenced and used in an assignment operation. Figure 10.4 shows the mynums array with its assigned
values.

LLIISSTTIINNGG 1100..22
element.c

#include <stdio.h>

int main(void)
 {
 int mynums[5];

 mynums[0] = 9;
 mynums[1] = 87;
 mynums[2] = 95;
 mynums[3] = 23;
 mynums[4] = 45;

 return 0;
 }

int mynums[5];

mynums 8 7

9 5

2 3

4 5

9

 0 1 2 3 4

mynums[2]

Figure 10.4. Referencing array elements.

Array Management and Loops
An array is only a collection of objects. It is not an object itself. This means that you cannot perform an
operation on an array as a whole. Instead, you need to perform a separate operation on each individual
element, dealing with them one by one. For example, to assign a set of values to an array, you need to
reference and assign a value to each individual element of the array.

Arrays and Pointers 10-8

 In this respect, an array initialization can appear misleading. The format of an array
initialization looks like a single assignment operation as it is written. This may wrongly lead you to
infer that the array is being treated as a whole It is not. In fact, each element of the array is initialized
its own value. For example, the array initialization shown in Listing 10.3 may appear to be a single
operation on the array mynums, but it is not. You should think of the array initialization:

 int mynums[3]={12, 5, 27};

as if it were three separate assignment operations, one for each element of the 3 element mynums array:

 mynums[0]= 12
 mynums[1]= 5
 mynums[2]= 27

LLIISSTTIINNGG 1100..33
mynums.c

#include <stdio.h>

int main(void)
 {
 int mynums[3]={12, 5, 27};
 int i;

 for (i = 0; i < 3; i++)
 {
 printf("%d \n", mynums[i]);
 }

 return 0;
 }

 Often you will have a task in which you need to reference all elements in an array, performing
the same operation on each element. Simply printing out an array is an example of such a situation.
Each element is referenced and printed out. You could write a print statement for each individual
element, but it is far more practical to simply use a loop control structure such as a while or for. Inside
the loop you would then need only one print statement, and each time through the loop the next element
would be printed, progressing from one element to the next. The integer variable used to control the
count of the loop would also be used to index and reference each array element in turn.
 In the mynums.c program in Listing 10.3, a for loop is used to print out all the values in an array.
Within the loop each element is individually referenced and printed out. Since arrays are numbered
from 0, care is taken to initialize the counting variable i to 0. The index of the last element of the letters
array is 2. The loop must cut out after 2, before 3. For this reason, the test is (i<3). It could just as
easily have been (i<=2).
 A common rule of thumb is that the test for the end of an array consists of the less-than operator,
<, tested against the number of objects declared in the array. If you declare an array to have 3 objects,
then, in a loop, you would test against 3, (i<3). To insure this fact, it is a common practice to define a
symbolic constant that represents the number of elements in a given array. You could then use this
same symbol in loop control structures as the cuttoff in the loop's test. In the maxnums.c program in
Listing 10.4, the same symbolic constant, MAX, is used in both the array declaration and the test for the

Arrays and Pointers 10-9

last array object in the for loop. Such a strategy has the distinct advantage of letting you easily change
the size of an array. Just change the number specified for the symbolic constant.

LLIISSTTIINNGG 1100..44
maxnums.c

#include <stdio.h>
#define MAX 3

int main(void)
 {
 int mynums[MAX]={12, 5, 27};
 int i;

 for (i = 0; i < MAX; i++)
 {
 printf("%d ", mynums[i]);
 }

 return 0;
 }

 You can also use loops to perform operations such as copying one array to another. Copying an
array requires that you individually reference the value of each element and assign it to an element in
another array. The copynums.c program in Listing 10.5 uses a for loop to copy the mynums array to the
newnums by individually copying each elements, one by one.

LLIISSTTIINNGG 1100..55
copynums.c

#include <stdio.h>
#define MAX 3

int main(void)
 {
 int mynums[MAX]={12, 5, 27};
 int newnums[MAX];
 int i;

 for (i = 0; i < MAX; i++)
 {
 newnums[i] = mynums[i];
 }

 return 0;
 }

Array References and Pointer Operations

An array subscript allows you to write a reference to an array element in much the same way as you
would write a simple variable reference. A variable is reference by it name, and an array element is

Arrays and Pointers 10-10

referenced by the array name and an index (an integer representing the position of the element in that
array). You can use such array subscripts references in the same way as you would use any variable
reference. However, the array subscript reference of an element only appears similar to that of a
variable. In fact, an array subscript is merely a notation, hiding the true underlying operation taking
place, a pointer operation. Arrays are actually managed entirely by pointers. What appears to be a
simple variable-like array element reference, is actually a pointer operations using a pointer and
indirection. To truly understand how arrays work in C, you need to know the pointer operations that
actually manage them. There are three pointer operations used to manage arrays: the offset, increment,
and index operations. Array subscript is actually translated into a pointer offset and indirection
operation.
 So far we have only examined how you can use pointers to reference a variable (as noted in
Chapters 5, 6, and 7). You can reference a variable either with its name or with an indirection operation
on a pointer that holds the address of that variable. However, array elements are not themselves
variables, and the pointer operations on arrays are not quite the same as those used on variables. To
understand the differences, it is important to remember that the indirection operation does not require
that pointer's address be the address of a variable. The indirection operation references the memory at
any address as if it were a variable. An indirection operation on a pointer to an integer references
memory as if it were reserved for an integer variable. Remember how the function malloc works with
pointers. In the example discussed in Chapter 5, the function malloc set aside memory in the heap and
returned its address. There was no variable declaration. The address was assigned to a pointer to an
integer. Indirection on that pointer referenced that memory in the heap as if it were the memory of an
integer variable. A variable requires a type, an address, and memory reserved at that address. The
pointer provided the type and address. malloc provided the reserved memory.
 A similar process takes place for arrays. An array declaration reserves memory. The array
name used in the declaration then functions as a pointer holding type and address information. In this
respect, an array name radically differs from variable names,. It is, in fact, a pointer. The array name
itself is the address of the first byte in that memory. Indirection operations can reference different parts
of that memory as if they were different variables. In this sense, an array declaration does not actually
create objects. Though you can treat array elements as variables, they are actaully referenced through
pointer operations on the array's memory.
 An array declaration reserves enough memory for the number of elements declared. An array of
10 integers will reserve 20 bytes, 2 to an integer. An array of 5 characters will reserve 5 bytes, one for
each character. You then use an indirection operation to reference each element. Before you can
reference a particular element in an array, you need to first calculate the address of that element's
memory. The offset and increment pointer operations can calculate the address of an array element.
Once calculated, an indirection operation can then reference the element. The index operation allows
you to uses two addresses to calculate an element's index, its position in an array.
 The pointer operations were designed specifically to work on arrays. It is possible for them to
work on any chunk of memory. However, they only make sense when applied to arrays.

The Array Name as Pointer

The use of an array name in an array's declaration can be misleading. An array declaration is made
using the array name and the array data type, []. There is no specific pointer type in the declaration, *.
However, when an array name is used in an expression, its type is that of a pointer. In expressions, the
array name becomes a pointer that holds the address of the first element in the array. Any operations
using the array name, including array subscript references, are really pointer operations. In the Figure

Arrays and Pointers 10-11

10.5, the mynums array declaration defines an array of five character bytes that are consecutively set
aside together in memory. In any expressions, the array name mynums is a pointer representing the
address of the first byte.

int mynums[5];

mynums

 500 501 502 503 504 505 506 507 508 509

mynums

 500

8 7 9 5 2 3 4 5 9

 0 1 2 3 4

Figure 10.5. Arrays and address.

 An array name, when used in expressions, operates like of a pointer constant. You can think of
it as a symbolic constant that represents the address of the first array element. An array name, however,
cannot have its address changed. It is not a pointer variable. Nor can the address operator operate on it.
The address operation &mynums is invalid.
 You can use an array name as the pointer operand in an indirection operation, just like a pointer
variable. Indirection on the array name itself references the first element in the array, as shown in
Figure 10.6. The indirection operation below references the first element in the mynums array.

 *mynums

 In the following statement, the call to printf prints out the contents of the first integer element
in the mynums array, in this case 9.

 printf("%d",*mynums);

int mynums[5];

mynums

 500 501 502 503 504 505 506 507 508 509

*mynums

8 7

9 5

2 3

4 5

9

 0 1 2 3 4

Figure 10.6. Using indirection on an array name to reference the first element in the
array.

 Though, in almost every expression, an array name is a pointer, there is one important exception.
As an operand of the sizeof operator, the array name does not function as a pointer. Instead it maintains
the original array data type defined in its array declaration. The array data type will specify the type of
object and number of objects in the array. The sizeof operator will result in the total number of bytes in
the array. sizeof calculates the size by multiplying the size of the type of object in the array by the

Arrays and Pointers 10-12

number of objects. In the sizenums.c program in Listing 10.6, the size of the mynums array is 6, and the
size of the last array is 5.

LLIISSTTIINNGG 1100..66
sizenums.c

#include <stdio.h>

int main(void)
 {
 char last[5] = {'R','I','C','H','\0'};
 int mynums[3] = {12, 5, 27};
 int numsize, lastsize;

 numsize = sizeof mynums;
 lastsize = sizeof last;
 printf ("Size of mynums is %d\n", numsize);
 printf ("Size of last is %d\n", lastsize);

 return 0;
 }

 Size of mynums is 6
 Size of last is 5

Pointer Offset Expressions

A pointer expression is an operation that results in an address. A pointer expression can be a primary
expression consisting of a pointer variable or a pointer constant. A pointer expression can also be a
function call, such as malloc, that returns an address. A pointer expression can even be an assignment
operation, in which an address is assigned to a pointer variable. The address assigned is the resulting
value of the expression.
 There is another pointer operation, which is technically referred to as a pointer arithmetic
operation. It appears similar to an arithmetic additive operation. However, it is not a simple arithmetic
process. It is designed to calculate the addresses of array objects. A better name for it may be the
pointer offset operation. It uses an offset to calculate an object's address in an array.
 The pointer offset expression consists of two operands: a pointer and an integer. The integer is
added to (or subtracted from) the pointer, resulting in a new address. This integer will be referred to
here as the offset. The pointer operand is any pointer expression. It can be a pointer variable, an array
name, a pointer assignment expression, or even another pointer offset expression.

 (pointer + integer)

 The offset in the pointer offset expression actually refers to the number of objects, not the
number of bytes. If an offset of 1 is added to an initial address, the address of the next object in the array
will be referenced. It is tempting to think of a pointer offset operation as adding the offset to the pointer
address. However, the offset is not added directly to the address. In pointer offset expressions, there is
a further hidden, implied calculation using the pointer's data type. The offset is always multiplied by
the size of the pointer's data type. The result of this calculation is the number that is then added to the

Arrays and Pointers 10-13

pointer address. In Figure 10.7 an offset of 3 is added to the array name mynums. The integer 3 will be
used to calculate an offset of 3 integers from the base address. The pointer's data type is an integer, and
the size of an integer is 2 bytes. An offset of 3 on an integer array actually adds 6, (3 * 2). In the
expression (mynums+3), the hidden multiplication by the size of the integer type results in the address
of the fourth element, 506.

 (mynums + 3)

 The address that results from the pointer offset expression can then be used in an indirection
operation to reference the object at that address. Remember that an address is not merely an address,
but an address of a type of object. In this sense, an address can be thought of as a pointer itself. An
address of an array element calculated by the pointer offset operations, will hold the data type of that
element. An indirection operation on the address of an array element can then reference that element.

 (mynums + 3) is 506
 (500 + (3 * 2));
 (500 + 6) is 506

int mynums[5];

mynums

 500 501 502 503 504 505 506 507 508 509

mynums

 500

87 95 23 45 9

 0 1 2 3 4

Figure 10.7. Pointer offset expression.

 You can apply the indirection operator directly to a pointer offset operation. Using an array
name as the pointer operand in an offset operation, a combined pointer offset and indirection operation
can reference a particular element in the array. For example, the combined expression *(mynums+2)
first calculates the address of the third object in the array and then references that object with an
indirection operation.

 *(mynums + 2)

 Notice that the integer used in the pointer offset operation is the index of the object referenced.
Figure 10.8, shows how a pointer offset operation derives the address of an array element, and how an
indirection operation on this address references the element.

 (mynums + 3) *(mynums + 3)
 (500 + 3) *(500 + 3)
 (506) *(506)
 506 *506
 23

Arrays and Pointers 10-14

int mynums[5];

mynums

 500 501 502 503 504 505 506 507 508 509

mynums

 500

8 7 9 5 2 3 4 5 9
 0 1 2 3 4

Figure 10.8 Pointer offset and indirection to reference array element.

 In the program offnums.c in Listing 10.7, the programs presented in Listings 10.5 and 10.6 are
combined and implemented using combined pointer offset and indirection operations, instead of array
subscripts. Notice how the integer used in the pointer offset expressions is derived from a pointer
variable, i, not a constant.

LLIISSTTIINNGG 1100..77
offnums.c

#include <stdio.h>
#define MAX 3

int main(void)
 {
 int mynums[MAX]={12, 5, 27};
 int newnums[MAX];
 int i;

 for (i = 0; i < MAX; i++)
 {
 printf("%d\n", *(mynums + i));
 }

 for (i = 0; i < MAX; i++)
 {
 *(newnums + i) = *(mynums + i);
 }

 return 0;
 }

 The integer in the pointer offset expression need not be a constant. The integer is literally
derived from an integer expression, which could just as easily be a variable, an arithmetic expression, or
a function call returning an integer. In the program offsets.c in Listing 10.8, there are several ways in
which the integer of the pointer offset expression is calculated. All these offset operations reference the
fifth object. Notice that in the last statement the integer is obtained from an integer variable referenced
through a pointer.

Arrays and Pointers 10-15

LISTING 10.8
offsets.c

#include <stdio.h>

int square(int);

int main(void)
 {
 char mynums[13];
 int myoffset;
 int square(int);
 int *ptr;

 myoffset = 4;
 *(mynums + myoffset);

 *(mynums + (2 * 2));
 *(mynums + (8 / ((int) 2.786)));

 *(mynums + square(2));

 ptr = &myoffset;
 *(mynums + *ptr);

 return 0;
 }

int square(int num)
 {
 return (num * num);
 }

Array Subscripts as Pointer Offsets

As previously noted, array subscripts consist of brackets enclosing an index and placed next to an array
name. The brackets used in a declaration have a different meaning than those used in array subscripts.
The brackets in an array declaration represent the array data type. However, in array subscripts, the
brackets are only a convenient and optional representation of a combined pointer offset and indirection
operation. In fact, your compiler will strip away brackets used in an array subscripts and replace them
by an offset and indirection operation. The array subscript mynums[i] actually represents the offset
and indirection operation *(mynums+i). For example, the programs in Listing 10.9 are exactly of
equivalent. The poffset.c program in Listing 10.9A uses array subscripts, whereas the notation.c
program in Listing 10.9B uses the combined offset and indirection operations.

Arrays and Pointers 10-16

LLIISSTTIINNGG 1100..99AA LLIISSTTIINNGG 1100..99BB
poffset.c notation.c
#include <stdio.h> #include <stdio.h>

int main(void) int main(void)
{ {
int i; int i;
int mynums[2] = {12,44}; int mynums[2] = {12,44};

i = 0; i = 0;
while(i < 2) while(i < 2)
 { {
 printf("%d",*(mynums+i)); printf("%d ",mynums[i]);
 i++; i++;
 } }
} }

 One often confusing feature of array subscripts is that it doesn't have to be used with just array
names. It can also be used with regular pointer variables. Array subscripts works equally well for both
pointer variables and array names. Since array subscript is really a pointer offset expression, the
address used in the offset expression can just as easily be obtained from a pointer variable as from an
array name. In Listing 10.10 there are two versions of the same program. Both use a pointer variable.
The pointer variable, numptr, is first assigned the beginning address of the mynums array, numptr =
mynums. The array name mynums evaluates to the beginning address of the array. The ptr_off.c
version in Listing 10.10A uses the standard pointer offset operation. The ptr_note.c version in Listing
10.10B uses array subscripts with a pointer variable.

LLIISSTTIINNGG 1100..1100AA LLIISSTTIINNGG 1100..1100BB
ptr_off.c ptr_note.c
#include <stdio.h> #include <stdio.h>

int main(void) int main(void)
{ {
int mynums[2] = {12,44}; int mynums[2] ={12,44};
int *numptr; int *numptr;
int i; int i;

numptr = mynums; numptr = mynums;
i = 0; i = 0;
while(i < 2) while(i < 2)
 { {
 printf("%d",*(numptr+i)); printf("%d ",numptr[i]);
 i++; i++;
 } }
} }

Pointer Arithmetic

Arrays and Pointers 10-17

Kernighan and Ritche describe a set of pointer expressions by the term pointer arithmetic, which can be
misleading. Arithmetic operations, as such, cannot be performed on pointers1. You cannot divide,
multiply, or add pointers. Technically, you can subtract pointers. But even pointer subtraction is not
the same as arithmetic subtraction, and is more accurately referred to a pointer difference operation.
 Though a pointer cannot be added to another pointer, a pointer can be added to an integer. An
integer can also be subtracted from a pointer. However, other types, such as floats, doubles, and longs,
cannot be added to or subtracted from a pointer. Furthermore, pointers cannot be multiplied or divided
by integers. Multiplication or division of any kind is strictly prohibited with pointers. These
restrictions eliminate most arithmetic operations. Only the following two operations are permitted:

 1. The addition or subtraction of an integer to a pointer.
 2. The subtraction of a pointer from another pointer.

 The addition or subtraction of an integer to a pointer is referred to here as the pointer offset
operation. This operation is used almost exclusively to reference objects in an array. The subtraction of
one pointer from another is usually used to determine the integer index of an object in an array. For that
reason it is referred to here as the index operation.

Increments: Pointer Assignments

You may recall the increment operator, ++, and its corresponding decrement operator, --, as described
in Chapter 3. When applied to an integer variable, the increment operator increments the integer
variable by 1, performing a combined addition and assignment operation. Remember that:

 i++ is equivalent to i=i+1

 The decrement operator would decrement the integer by 1, performing a subtraction instead of
an addition. i-- is equivalent to i=i-1.
 In much that same way, you can also apply the increment and decrement operators to pointer
variables. But in this case, the increment and decrement operations are equivalent to pointer
expressions, not simple addition and subtraction. When you use an increment operator, ++, on a pointer
variable, the increment operation can be thought of as incrementing the pointer variable's address. This
pointer increment operation is the equivalent of a combined pointer offset and pointer assignment
operation. In the pointer offset operation, the pointer operand is the pointer variable, and the integer is
the constant 1, which is added to the address held by the pointer variable. The resulting address is then
assigned back to the same pointer variable.

 numptr++ is equivalent to numptr=numptr+1

1. Kernighan, B. and D. Ritchie. The C Programming Language. (2nd Edition.) Englewood Cliffs: N.J.:
Prentice Hall, 1978. pp.100-103.
 It is important to realize that an offset of 1 includes a hidden multiplication by the size of the
pointer's data type. In Figure 10.9, an increment of numptr increments by the size of an integer, 2 bytes.
Given this fact, you can now see how such pointer increments can be very useful in referencing array
elements. If a pointer variable holds the address of an array element, then an increment operation on
that pointer will give it the address of the next element in the array, effectively moving from one

Arrays and Pointers 10-18

element to the next. An increment of such a pointer is always an increment of the pointer to the address
of the next element in the array.

 numptr++ is 502
 (500 + (1 * sizeof(int)))
 (500 + (1 * 2));
 (500 + 2) is 502

int mynums[5];
int *numptr;

numptr = mynums;

numptr

mynums

 500 501 502 503 504 505 506 507 508 509

500

8 7

9 5

2 3

4 5

9

 0 1 2 3 4

Figure 10.9. Increment on pointer variable, referencing array elements.

 Once the increment operation changes the pointer variable to the address of the next array
element, then you can reference that element by performing an indirection operation on that pointer.
For example, as shown in Figure 10.9, the increment of the numptr variable changed the address it held
to 502, the address of the second element. An indirection operation on numptr will then reference that
second element, *numptr. In this case, the following printf out display the value of the second
element in the mynums array, 87.

 printf("%d\n",*numptr);

 The increment operation applied to a pointer variable is often used to advance down an array,
element by element. Such a pointer variable is often referred to either as a working pointer or as a
temporary pointer. The pointer variable is first assigned the beginning address of the array, the address
of the first element. Then subsequent increment operations will move the pointer from one element's
address to the next. A indirection operation on that address will reference that element. In the program
ar_inc.c in Listing 10.11, numptr is an example of such a working pointer. numptr is used to advance
down the mynums array. Each integer in the mynums array is printed out using a pointer, numptr.
numptr is incremented by the size of an integer. It is consecutively set to the address of each integer
element in the array.

Arrays and Pointers 10-19

LLIISSTTIINNGG 1100..1111
ar_inc.c

#include <stdio.h>

int main(void)
 {
 int i = 0;
 int mynums[5] = { 9, 87, 95, 23, 45 };
 int *numptr;

 numptr = mynums;
 while (i < 5)
 {
 printf("%d %d %p \n", i, *numptr, numptr);
 numptr++;
 i++;
 }

 return 0;
 }

 Assuming that the address of the mynums array in Listing 10.11 is 500, the program would print
out:

 0 9 500
 1 87 502
 2 95 504
 3 23 506
 4 45 508

 In the ar_inc.c program in Listing 10.11, a counter, i, had to be tested against the number of
objects in the array, 5, in order to detect the end of the array. The counter is not needed for anything else.
There is a way to do away with this overhead, and use the pointer variable instead of an integer counter
to detect the end of the array. To do so you need to determine the end address of the array The working
pointer can then be tested against this end address. You can easily determine the end address of an array
by a pointer offset operation in which the number of objects in an array is added to the array name. For
example, given the declaration mynums[5], you can calculate the end address of the mynums array
with the offset expression mynums+5. Assuming that the mynums array name is the address 500,
mynums+5 will result in the address 510. You could then test a working pointer against this address to
detect the end of the array. In Listing 10.12, numptr tests for the end of the array with the expression
numptr<(mynums+5). Notice that there is now no longer any need for a counter variable. The entire
loop is managed using pointers and pointer operations such as offsets, increments, and indirections.

Arrays and Pointers 10-20

numptr
500

504

502

500
*numptr

506

508

9
 8 7

9 5

2 3
 4 5

mynums

mynums + 5 510
510

numptr
502

numptr is initialized to the beginning address of
the mynums array, by assigning the array name
mynums to numptr . Indirection on numptr
will reference a mynums element.

numptr is incremented
to the address of the
next element.
Subsequent increments
will move down the array
from one element to the
next.

numptr = mynums

numptr++

2

1

3 numptr is tested against the ending address of the array,
which is calculated by a pointer offset operation consisting
of the array name and the number of objects in the array, in
this case, mynums + 5 .

Figure 10.10. Using working pointers on an array.

 Remember that mynums as an array name is a pointer, and that mynums+5 is a standard pointer
offset operation. As such there is a hidden multiplication by the size of the pointer data type, in this case
an integer. Assuming that an integer is 2 bytes, the mynums+5 is equivalent to mynums + (5*2). If
mynums is 500, this gives us 500 + 10, 510, the end address of the array.

LLiissttiinngg 1100..1122
ptrinc.c

#include <stdio.h>

int main(void)
 {
 int mynums[5] = { 9, 87, 95, 23, 45 };
 int *numptr;

 numptr = mynums;
 while (numptr < (mynums + 5))
 {
 printf("%d %p \n", *numptr, numptr);
 numptr++;
 }

 return 0;
 }

 A decrement operator performs the same kind of operation, except that a pointer is decremented
to the address of the previous object. The decrement is actually a combination of the subtraction and
assignment operations.

Arrays and Pointers 10-21

 numptr-- is equivalent to numptr=numptr-1

 Like the increment operation, the decrement contains a hidden multiplication by the size of the
pointer data type. The result is the subtracted from the pointer variable. Using the mynums array in
Figure 10.9 as an example, if numptr is set to 508, then numptr-- will set numptr to 506. Since
numptr is a pointer to an integer, there is a hidden multiplication by the size of an integer, 2.

 int *numptr;
 numptr-- evaluates to numptr = numptr - (1 * 2)

 In the ptrdec.c program in Listing 10.13, the mynums array is printed out in reverse using the
decrement operator. Notice how numptr is initialized to the last object in the array. The offset of the
last object is always the number of objects in the array minus 1.

LLIISSTTIINNGG 1100..1133
ptrdec.c

#include <stdio.h>
#define MAX 5

int main(void)
 {
 int mynums[MAX] = { 9, 87, 95, 23, 45 };
 int *numptr;

 numptr = mynums + (MAX - 1);
 while (numptr >= mynums)
 {
 printf("%d %p \n", *numptr, numptr);
 numptr--;
 }

 return 0;
 }

 You can, if you wish, combine the pointer increment and indirection operations. Such
combinations can be difficult to interpret so you may want to avoid them. However, they do allow the
development of very compact code. One key point to remember in such combination is that the
increment can be either a postfix or prefix operator. When placed before a variable it is prefix operation,
being performed before any other operation in the expression. When placed after the variable, it is a
postfix operator and is only performed after all other operations in the expression. Commonly the
increment is combined with indirection as a postfix operation. The indirection operator is placed before
the pointer variable and the increment operator after it.

 *numptr++

 The other key point in such combinations is to keep in mind that the increment operation can
operate either on the pointer or on the object pointed to by the pointer. This all depends upon which

Arrays and Pointers 10-22

operation is evaluated first. If the increment is evaluated first, then the pointer is incremented. But if
the indirection is evaluate first, then the increment operates on the object referenced by that indirection.
 You should think of *numptr++ as actually two operations in one, *numptr and numptr++.
Since both the indirection and increment operators have the same precedence, their associativity will
determine the order in which they are evaluated. This means that where you position the increment and
indirection operators is crucial. The indirection and increment operators associate from right to left.
The right-most operator will be evaluated first. In the case of *numptr++, the increment, ++, is first
evaluated and applied to the variable numptr. This means that the address in numptr will be
incremented. Incrementation, in this case, applies to the pointer variable. However, the increment
operator is placed after the pointer, making it a postfix operation. The increment will be performed
after all other operations in the expressions, including the indirection operation. Then the indirection
operation is evaluated. Since the incrementation is postfix, the indirection operation is performed
before the address is incremented.
 In the following example, the combined indirection and increment operations are broken down
into their equivalent statements. Doing this can often help you keep straight what is being incremented
and when.

 *numptr++; *numptr;
 numptr = numptr + 1;

 The differences become a bit more clear when you use the combination as part of a larger
expression.

 *numptr++ = 5; *numptr = 5;
 numptr = numptr + 1;

 To clarify such operations, it is advisable to use parenthesis to determine the sequence of
evaluation, instead of relying on assciativity. Parenthesis will force the evaluation of one operation
before another. In the next example, parenthesis aroud the indirection operation clearly indicate that the
indirection will be performed before the increment.

 (*numptr)++ = 5;

 If you place the increment before the pointer variable, it becomes a prefix operation. In this case
it is executed before any other operations in the expression. In the following example, the pointer
variable is incremented first. Indirection will then operate on the new address. Notice that, though the
increment is place before the variable, it still comes after the increment operator, *++numptr. The
right to left associativity will still evaluate the increment operation first, making the increment an
operation on the pointer variable.

 *++numptr; numptr = numptr + 1
 *numptr;

 Again, use of parenthesis will clarify the sequence of operations.

 *(++numptr);

 In Listing 10.14, there are two examples of this combination of indirection and postfix
increment of a pointer. The increment and indirection on numptr now both take place in the printf
statement. However, in the postinc.c program in 10.14A, the increment is a postfix operation, and in

Arrays and Pointers 10-23

the preinc.c program in 10.14B, the increment is a prefix operation. Notice that in 10.14B, the
increment takes place before the first element is printed out. The first element is never printed.

LLIISSTTIINNGG 1100..1144AA LLIISSTTIINNGG 1100..1144BB
postinc.c preinc.c

#include <stdio.h> #include <stdio.h>

int main(void) int main(void)
{ {
int mynums[2] = {12,44}; int mynums[2] = {12,44};
int *numptr; int *numptr;

numptr = mynums; numptr = mynums;
while(numptr<(mynums+2)) while(numptr<(mynums+2))
 { {
 printf("%d",*numptr++); printf("%d",*++numptr);
 } }
} }

 If you should place the increment operator to the left of the indirection operator, the element
referenced is incremented instead of the pointer variable. The right to left associativity will the first
evaluate the indirection operation, referencing the object. The variable pointed to is referenced. The
increment operation is then evaluated and operates on the referenced object. That variable is then
incremented. In the next example, the integer variable referenced by numptr, not the address in
numptr, is incremented.

 ++*numptr; is equivalent to (*numptr) = (*numptr) + 1;

 The same kind of combinations can work for decrements. For example:

 *numptr--; *numptr;
 numptr = numptr - 1;

 Like the increment operator, the decrement can be either a postfix or prefix operation. Here is
an example of the prefix decrement operation.

 *--numptr; numptr = numptr - 1
 *numptr;

 If you should place the decrement operator before the indirection operator, then the object
pointed to is decremented, not the pointer.

 --*numptr; is equivalent to (*numptr) = (*numptr) - 1;

 Using parenthesis will clarify the sequence.

 --(*numptr);

Arrays and Pointers 10-24

 In the predec.c program in Listing 10.15, a combined decrement an indirection operation is
used in the printf statement to both move to the previous element in the array and to reference that
element, *--numptr. Notice, that, unlike Listing 10.14, numptr is set to the end address of the array,
not the address of the last element. This can be done because the decrement is a prefix operation taking
effect before the first indirection. numptr is first decremented back to the address of the last array
element and only then does indirection references that element. Using the mynums example in Figure
10.9, numptr is set to 510, then decremented to 508 (the address of the last element), before the
indirection takes place.
 Notice also that the test for the beginning of the array uses only a > operator instead of a >=
operator in Listing 10.14. With postfix and prefix operations you need to be very careful to not to either
stop too soon or stop too late at the end of the array.

LLIISSTTIINNGG 1100..1155
predec.c

#include <stdio.h>
#define MAX 5

int main(void)
 {
 int mynums[MAX] = { 9, 87, 95, 23, 45 };
 int *numptr;

 numptr = mynums + MAX;
 while (numptr > mynums)
 {
 printf("%d\n", *--numptr);
 }

 return 0;
 }

Indexes: Pointer Differences

An index is the position of an element in an array. In C, array elements are indexed from zero. For
example, the third element of an array has an index of 2, and the first element has an index of 0. You
could find yourself in a situation in which you have the address of an element, but not its index. In such
a case you can use the pointer difference operation to calculate that element's index. In a pointer
difference operation one pointer is subtracted from another. The subtraction results in an integer value
that is the difference between two pointers. It does not result in an address. Technically, this integer
value is the number of objects between two addresses. Though pointer difference can operate between
any two addresses, it was designed to operate on arrays, determining the index of an element given only
its address. To do so the array name is used as one operand and the element address as the other. The
array name is then subtracted from the address of an element. The result is the index of that element in
the array.

 working_pointer - array name

Arrays and Pointers 10-25

 Usually you will have a working pointer that holds the address of the element. You then
subtract the array name from the working pointer. In the next example, the index is calculated by
subtracting the array name mynums from the pointer variable numptr. The result is an integer and this
value is assigned to the integer variable rindex.

 rindex = numpter - mynums;

 The index.c program in Listing 10.16 performs the same calculation. First, the pointer variable
numptr is assigned the address of the fourth element, mynums[3]. The index of the element is then
determined by a subtraction of mynums from numptr. This index result is assigned to the integer
rindex. which is then used to in array subscripts to reference and print out the fourth element. Notice
that rindex is declared as an integer, not a pointer. The result of a pointer difference expression is an
integer, not a pointer value.

LLIISSTTIINNGG 1100..1166
index.c

#include <stdio.h>

int main(void)
 {
 int mynums[5] = { 9, 87, 95, 23, 45 };
 int rindex;
 int *numptr;

 numptr = mynums + 3;

 rindex = numptr - mynums;

 printf("%d %d\n", mynums[rindex] ,mynums[3]);

 printf("%d %d\n", *(mynums+rindex), *(mynums+3));

 return 0;
 }

 Assuming the mynums array as depicted in Figure 10.11, the index.c program in Listing 10.16
would print out the value of the fourth array element.

 23 23
 23 23

 The offset expression mynums+3 assigns the address 506 to numptr. 506 is the address of the
fourth element in the mynums array. The pointer subtraction of the array name mynums from numptr
results in the integer value 3, which is the offset and the index for the fourth element of the mynums
array. Notice that in this situation, mynums[rindex], mynums[3], *(mynums+rindex),
*(mynums+3), and *numptr all reference the same array element.
 In a pointer difference operation, it is important to realize that there is a hidden division by the
size of the pointer's data type. In Figure 10.11, a subtraction of mynums from numptr further divides
the difference by the size of an integer, 2 bytes. In this sense, pointer difference always results in the

Arrays and Pointers 10-26

number of elements between two addresses, not the number of bytes. As shown in figure 10.11, the
subtraction of mynums from numptr results in the integer value 2.

(numptr - mynums) is 2
 (504 - 500) / sizeof(int)
 4 / sizeof(int);
 4 / 2 is 2

int mynums[5];
int *numptr;

numptr = mynums + 2;

numptr

mynums

 500 501 502 503 504 505 506 507 508 509

504

8 7 9 5

2 3

4 5

9

 0 1 2 3 4

Figure 10.11. The index operation: pointer difference.

 The numidx.c program in Listing 10.17 uses pointer difference to calculate each array index
and then uses that index to reference and print out each element in the mynums array. The address of
each element is held by the pointer numptr. mynums is then subtracted from numptr, and the result is
used as an array index. The array index is used with pointer notation to print out an element of the array.

LLIISSTTIINNGG 1100..1177
numidx.c

#include <stdio.h>

int main(void){
 int i = 0;
 int mynums[5] = { 9, 87, 95, 23, 45 };
 int *numptr;
 int index;

 numptr = mynums;

 while (numptr < (mynums + 5))
 {
 index = numptr - mynums;
 printf("%d %d %p %p\n",
 index, mynums[index], numptr, mynums);
 numptr++;
 }

 return 0;
 }

Assuming that the address of the mynums array is 500, the numidx.c program in Listing 10.17
would print out:

Arrays and Pointers 10-27

 0 9 500 500
 1 87 502 500
 2 95 504 500
 3 23 506 500
 4 45 508 500

TTAABBLLEE II OOFFFFSSEETTSS,, IINNCCRREEMMEENNTTSS,, aanndd IINNDDEEXXEESS

OFFSETS
Addition or subtraction of pointer with arithmetic integer value. Implied multiplication by sizeof(type) of
arithmetic value.

pointer + integer

pointer - integer

 (numptr + 2) numptr + (2 * sizeof(int))

 (numptr - 2) numptr - (2 * sizeof(int))

INCREMENTS AND DECREMENTS
Addition or Subtraction of 1 multiplied by sizeof(type). Increment to next element in array, or decrement to
previous element. Actual increment or decrement by size of type.

pointer_variable++

pointer_variable--

 numptr++; numptr = numptr + sizeof(int);

 numptr--; numptr = numptr - sizeof(int);

 INDEXES
Difference of two pointers or pointer values. Implied division by sizeof(type). Subtract a array name from
working pointer to obtain index of an element.

working_pointer - array name

pointer expression - pointer expression

 (numptr - mynums) (numptr - mynums) / sizeof(int)

 (numptr-(mynums+2))

 (numptr - (mynums + (2 * sizeof (int))) / sizeof(int)

 Pointer difference is not limited to using array names to calculate indexes. The addresses used
in the pointer difference operation can be derived from any pointer expression. However, there is one
important limitation. The pointers used as operands in a pointer difference operation must have the
same data type. You could not subtract the address of an integer from the address of a float. In the

Arrays and Pointers 10-28

indexop.c program in Listing 10.18, several different pointer expression are used as operands in a
pointer difference operation. The result assigned to rindex is always 4. First an array name is
subtracted from a pointer variable, then a pointer variable is subtracted from another pointer variable,
and finally an array name is subtracted from the address resulting from a pointer offset expression.

LLIISSTTIINNGG 1100..1188
indexop.c

#include <stdio.h>

int main(void)
 {
 int mynums[5] = { 9, 87, 95, 23, 45 };
 int *lastptr;
 int *firstptr;
 int rindex;

 lastptr = (mynums + 4);
 rindex = lastptr - mynums;
 firstptr = mynums;
 rindex = lastptr - firstptr;
 rindex = (mynums + 4) - mynums;

 return 0;
 }

Arrays and Functions

Often you will want to pass an array from one function to another, either to reference its values or to
work on its elements. However arrays cannot be passed from one function to another as variables are.
The values of an array as a whole cannot be passed to a function. Arrays are not variables. This means
that call-by-value operations cannot be performed on an array as a whole. Call-by-value assumes that
there is a corresponding parameter variable in which to place the argument's values. The array name is
only an address, it is not a variable.
 However, any function could access elements in an array using pointer offset operations if the
beginning address is known. The array name is that beginning address. You can pass this beginning
address into a function that has a parameter declared as a pointer variable. This effectively implements
a call-by-reference operation for the array, passing the address of the array from one function to
another.
 When an array name is used as an argument, it is passing a reference for the array. It is not
passing a value. This means that a parameter can never be declared as an array. This fact is confused by
the fact that there is an array subscript that is often used in parameter declarations. You can declare a
parameter using a set of empty brackets. But this notation is simply translated into a pointer declaration.
Through this pointer, you can then reference the elements of the array in the calling function.

 int parray[] is equivalent to int *parray

Arrays and Pointers 10-29

LLIISSTTIINNGG 1100..1199
printnum.c

#include <stdio.h>
#define MAX 3

void printarray(int[], int);

int main(void)
 {
 int mynums[MAX] = {12, 5, 27};

 printarray(mynums, MAX);

 return 0;
 }

void printarray(int parray[], int max)
 {
 int i;

 for (i = 0; i < max; i++){
 printf("%d\n", parray[i]);
 }
 }

 In the printnum.c program in Listing 10.19, the array name mynums is an argument in the
function call to printarray. The array name is the address of the mynums array. This address is passed to
parray, which is a pointer variable. Here, however, the array subscript is used to declare the pointer
variable. Array subscript is then used in the function to reference elements of the mynums array.

#include <stdio.h>
#define MAX 3

void printarray(int[], int);

int main(void)
{
int mynums[MAX] = {12, 5, 27};

printarray(mynums, MAX);
}

void printarray(int *parray, int max)
{
int i;

for (i = 0; i < max; i++){
printf("%d\n",*(parray+i));
}

}

604

600

602

5

1 2

2 7

mynums

600

600

3

Figure 10.12. Arrays and Functions, passing an address of an array to a function.

Arrays and Pointers 10-30

 The array subscript used in parameter declarations is only a notation. It is really only an
alternative way of writing the declaration of a pointer variable. Array subscript and pointer offset
operations can be applied interchangeably to a pointer declared in either form. In Listing 10.20, an
array name is passed to a parameter pointer. In the parptr.c program in Listing 10.20A the parameter
variable is declared using the pointer type. In the parnote.c program in Listing 10.20B, the parameter
variable is declared using the array subscript. Offset operations and array subscripts are used in each
case to reference array elements.

LLIISSTTIINNGG 1100..2200AA 1100..2200BB
parptr.c parnote.c

#include <stdio.h> #include <stdio.h>

void add (int*); void add(int[]);

int main(void) int main(void)
 { {
 int mynums[5]; int mynums[5];

 add(mynums); add(mynums);
 } }

void add (int *numptr) void add(int numptr[])
 { {
 *(numptr + 2) = 35; numptr[2] = 35;
 numptr[2] = 35; *(numptr + 2) = 35;
 } }

 In the ptrprint.c program Listing 10.21, the program in Listing 10.19 is rewritten using a
pointer type for the parameter declaration instead of array subscripts. Elements of the array are
referenced with a combined offset and indirection operation.

Arrays and Pointers 10-31

LLIISSTTIINNGG 1100..2211
ptrprint.c

#include <stdio.h>
#define MAX 3

void printarray(int[], int);

int main(void)
 {
 int mynums[MAX] = {12, 5, 27};

 printarray(mynums, MAX);

 return 0;
 }

void printarray(int *parray, int max)
 {
 int i;

 for (i = 0; i < max; i++){
 printf("%d\n",*(parray+i));
 }
 }

 The pointer declared as a parameter is a variable itself. As a variable, its values can be changed.
In several situations you can use the parameter pointer that references an array as a working pointer to
advance down the array from one element to the next. The parameter pointer will be incremented using
the increment operator. Of course, the original beginning address of the array is lost. However, if the
function only requires a single sequential use of the array elements, it will not matter if the beginning
address is lost. On the other hand, in most situations the beginning address should be preserved. In the
incprint.c program in Listing 10.22, the parray pointer is incremented as a working pointer advancing
from one element to the next.

Arrays and Pointers 10-32

LLIISSTTIINNGG 1100..2222
incprint.c

#include <stdio.h>
#define MAX 3

void printarray(int[], int);

int main(void)
 {
 int mynums[MAX] = {12, 5, 27};

 printarray(mynums, MAX);

 return 0;
 }

void printarray(int *parray, int max)
 {
 int i;

 for(i=0; i < max; i++)
 {
 printf("%d\n",*parray);
 parray++;
 }
 }

 In the constprt.c program in Listing 10.23, the address in the parameter pointer is preserved,
and a separate working pointer that will advance through the array is declared. Notice that the
parameter pointer is declared with the const qualifier. This prevents the writing of any code that
attempts to modify the parameter pointer. It becomes a constant pointer. The const qualifier is placed
after the pointer's data type and before the pointer type, *. This indicates that the pointer, not the object
it points to, is being qualified. The address in the pointer itself cannot be changed, not the object it
points to.

Arrays and Pointers 10-33

LLIISSTTIINNGG 1100..2233
constprt.c

#include <stdio.h>
#define MAX 3

void printarray(int const*, int);

int main(void)
 {
 int mynums[MAX] = {12, 5, 27};

 printarray(mynums, MAX);

 return 0;
 }

void printarray(int const *parray, int max)
 {
 int *wkptr;

 for(wkptr=(int*)parray; wkptr<(parray+max); wkptr++)
 {
 printf("%d\n",*wkptr);
 }
 }

Controlling modification of Arrays: const

 Because you can only pass the address of an array, not its values, an array is open to
modification by any function given that address. An array's call-by-reference operation allows a
programmer to the write code that modifies it, in any function it is passed to. Sometimes the array
elements need to be changed, as in the case of the copy program in Listing 10.24. The elements of the
array copynums in main will have their values changed through pointer references in the function
copyarray.
 However, there are situations in which the elements of an array should not be changed in a
function. In the copy program, code that changes the elements of the source array, in this case mynums,
should never be written. You can forcibly prevent such modification by qualifying the parameter
pointer declaration with the const type qualifier. The const type qualifies a variable as a constant,
preventing its value from being changed. It can easily be applied to array elements. In the constcpy.c
program in Listing 10.24, the const modifier is used to prevent the sarray pointer from ever
changing the source array. In effect, only the value of the source array, mynums, can be referenced.
 The const qualifier can be used in two different ways: one to qualify the pointer itself, and the
other to qualify the object pointed to.

const int *sptr; Pointed-to object cannot change, but pointer can change
int const *sptr; Pointed-to object can change, but pointer cannot
const int const *ptr Neither pointed-to object nor pointer can change

Arrays and Pointers 10-34

LLIISSTTIINNGG 1100..2244
constcpy.c

#include <stdio.h>
#define MAX 3

void copyarray(int [], const int [], int);

 int main(void)
 {
 int mynums[MAX] = {12, 5, 27};
 int copynums[MAX];

 copyarray (copynums, mynums, MAX);

 return 0;
 }

 void copyarray(int tarray[],const int sarray[],int num)
 {
 int i;
 for (i = 0; i < num; i++)
 {
 tarray[i] = sarray[i];
 }
 }

 In the constsrc.c program in Listing 10.25, the program in Listing 10.24 is rewritten using
pointer declarations for the parameters in the definition of copyarray. In the declaration of sarray,
the const modifier affects the elements referenced, not sarray itself. The source array is referenced by
the pointer sarray. The const qualifier placed before the pointer's data type will prevent the pointer
from modifying the object it points to. sarray can change its value. It can be set to another address.
However, the elements it references through indirection cannot be changed. The expression *sarray
= 10; is not allowed.

Arrays and Pointers 10-35

LLIISSTTIINNGG 1100..2255
constsrc.c
#include <stdio.h>
#define MAX 3
void copyarray(int*, const int*, int);

 int main(void)
 {
 int mynums[MAX] = {12, 5, 27};
 int copynums[MAX];

 copyarray (copynums, mynums, MAX);

 return 0;
 }

void copyarray(int *tarray, const int *sarray, int num)
 {
 int i;
 for (i = 0; i < num; i++)
 {
 tarray[i] = sarray[i];
 }
 }

Passing Array Elements: call-by-value and call-by-reference

 Though the values of an array as a whole cannot be passed, you can pass the values of individual
array elements. In a one-dimensional array, the reference of an array element is equivalent to a variable
reference. When used as an argument, the value of the referenced element is passed. In this case, the
corresponding parameter is a variable with the same data type as that of the element. In the printele.c
program in Listing 10.26, an element of an array is used as an argument. The value of the first element,
12, is passed into an integer parameter variable.

Arrays and Pointers 10-36

LLIISSTTIINNGG 1100..2266
printele.c

#include <stdio.h>

#define MAX 3

void printnum(int);

int main(void)
 {
 int mynums[MAX] = {12, 5, 27};

 printnum(mynums[1]);

 return 0;
 }

void printnum(int num)
 {
 printf("%d ", num);
 }

#include <stdio.h>

#define MAX 3

void printnum(int);

int main(void)
{
int mynums[MAX] = {12, 5, 27};

printnum(mynums[1]);
}

void printnum(int num)
{

printf("%d ", num);
}

2

0

1

5

1 2

2 7

mynums

12

12

num

mynums[1]

Figure 10.13. Array elements as arguments.

 There may be situations in which you may need to modify an array element. In this case, you
would have to perform a call-by-reference operation on the array element, passing its address to a
pointer variable. You can obtain the address of an element by applying the address operation to a
reference of the element. Usually you only need to place the address operator before an array subscript
reference of the element. The following example obtains the address of the third element in the mynums
array.

Arrays and Pointers 10-37

 &mynums[2]

 In the program getnums.c in Listing 10.27, the user is allowed to enter in the values for the
mynums array. This requires a call to scanf. However, scanf always requires the address of an object.
In this case, the object is first referenced with array subscript, and then its address is obtained with the
address operator.

LLIISSTTIINNGG 1100..2277
getnums.c

#include <stdio.h>

int main(void)
 {
 int mynums[5];
 int i;

 for (i = 0; i < 5; i++)
 {
 printf("Enter number :");
 scanf("%d", &mynums[i]);
 }

 for (i = 0; i < 5; i++)
 {
 printf("%d \n", mynums[i]);
 }

 return 0;
 }

 There is, of course a shortcut version of this process. Array subscripts is really equivalent to a
pointer offset and indirection operation. In the program getnoff.c in Listing 10.28, the previous
program is written with the pointer offset mynums+i rather than with the array subscript and address
operation &num[i]. The offset operation mynums+i results in the address of that element. scanf only
requires the address. It does not matter how the address is obtained.

 num[i] is equivalent to *(mynums + i)
 &num[i] is equivalent to &(*(mynums + i))
 &(*(mynums+i)) is equivalent to (mynums + i)

Arrays and Pointers 10-38

LLIISSTTIINNGG 1100..2288
getnoff.c
#include <stdio.h>

int main(void)
 {
 int mynums[5];
 int i;

 for (i = 0; i < 5; i++)
 {
 printf("Enter number :");
 scanf("%d", (mynums + i));
 }

 for (i = 0; i < 5; i++)
 {
 printf("%d \n", *(mynums + i));
 }

 return 0;
 }

Chapter Summary: Arrays and Pointers

An array is a collection of objects, but it is not an object itself. The objects in an array are referred to as
elements. Elements are numbered starting from zero. An array of five elements is numbered 0 to 4.
Each element is referenced according to its position in the array. An element can be referenced using
array subscripts, which consists of the array name and the position of the element enclosed in brackets.
 An array is declared with a data type, an array name, the array data type, and the number of
objects in the array. The array data type is a set of brackets. Brackets mean different things depending
upon where they are used. Brackets are used in declarations, statements, and parameter declarations. In
each situation, brackets have a different meaning. In declarations, brackets denote the array data type
used to declare an array. In statements, brackets constitute an array subscript that represents a pointer
offset and indirection operation. In parameter declarations, the array declaration is converted to a
pointer declaration.
 The array name itself is an address of the first element in the array. The array name can be
thought of as a pointer constant. You use the array name in pointer operations to reference objects in the
array.
 Pointer offsets and indexes were designed to work on arrays. An offset is an expression in
which an integer is either added to or subtracted from a pointer. The increment operation advances a
pointer from one element to the next in an array. An increment simply consist of resetting a pointer to
itself with an offset of 1. Indexes are derived by subtracting one pointer from another. The result is the
difference, in terms of the number of elements between the two pointers.
 The increment operation is often used for a working pointer that advances down the array from
one object to the next. The end address of the array can be calculated with an offset expression
consisting of the array name and the number of objects in the array. The end address of the array
declared as int mynums[5] is mynums + 5. The working pointer can be tested against this end
address as it advances down the array.

Arrays and Pointers 10-39

 Arrays can only be passed to functions in a call-by-reference operation. However, you can use
the const qualifier to either protect the parameter pointer that holds the beginning address or to protect
the array in the calling function whose address was passed.

Exercises

Using the program that follows, replace the variable i altogether. Instead of comparing i to 10, compare
numptr to a pointer offset operation that yields the last address in the array. The first address in the
array is mynums. The last is mynums plus an offset of 10. Also, implement the increment of numptr
with the increment operator, ++.

Offsets can be negative as well as positive. Rewrite the program, filling up the array in reverse order
(decrement from 9 to 0). Use the decrement operator, --.

Add a search process which requests a number to be searched and then prints out the index of that
number in the array. Remember that the subtraction of two pointers will result in an index to an array.
The address of the array is subtracted from the address of an element in the array. If numptr is pointing
to the third element, then the expression (numptr-mynums) results in the integer 2. This is often
helpful in a search.

#include <stdio.h>

int main(void)
 {
 int mynums[10], i = 0;
 int * numptr;

 numptr = mynums;
 while (i < 10)
 {
 printf("Enter number :");
 scanf("%d", numptr);
 numptr = numptr + 1;
 i++;
 }

 for(numptr=mynums,i=0;i<10;numptr=numptr+1,i++)
 {
 printf("%d \n", *numptr);
 }

 return 0;
 }

Arrays and Pointers 10-40

	Section 2: Arrays and Pointers
	10. Arrays and Pointers
	Array Declarations and Initializations
	Array Initialization
	Array References and Array Subscripts
	Array References and Pointer Operations
	The Array Name as Pointer
	Pointer Offset Expressions
	LISTING 10.8

	Pointer Arithmetic
	Increments: Pointer Assignments
	Indexes: Pointer Differences
	Arrays and Functions
	Controlling modification of Arrays: const
	Passing Array Elements: call-by-value and call-by-reference
	Chapter Summary: Arrays and Pointers
	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /ZWAdobeF
]
 /NeverEmbed [true
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

